sobota, 6 maja 2017
inverse fast fourier transform FFT radix-4 N points universal final
//source:
//https://www.google.ch/patents/US6957241
//http://www.google.ch/patents/US20020083107
//https://www.beechwood.eu/fft-implementation-r2-dit-r4-dif-r8-dif/
//http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html
//http://dsp.stackexchange.com/questions/3481/radix-4-fft-implementation
//https://community.arm.com/graphics/b/blog/posts/speeding-up-fast-fourier-transform-mixed-radix-on-mobile-arm-mali-gpu-by-means-of-opencl---part-1
//book: "Cyfrowe przetwarzanie sygnalow" - Tomasz Zielinski it has quick version of radix-2 because it calculates less sin() and cos()
//author marcin matysek (r)ewertyn.PL
//inverse fourier transform iFFT radix-4 for N=4096 points algorithm c++ source code implementation
//szybka odwrotna transformacja fouriera iFFT radix-4 dla N=4096 algorytm c++ kod zródlowy implementacja
#include <iostream>
#include "conio.h"
#include <stdlib.h>
#include <math.h>
#include <cmath>
#include <time.h>
#include <complex>
#include <fstream>
using namespace std;
//const double pi2=3.141592653589793238462;
double fi=0;
//complex number method:
void fun_inverse_bits_radix_4(int N,std::complex<double> tab[]);
void fun_fourier_transform_FFT_radix_4_N_points_universal_final(int N,std::complex<double> tab[],std::complex<double> w10,std::complex<double> w11);
void fun_inverse_fourier_transform_FFT_radix_4_N_points_universal_final(int N,std::complex<double> tab[],std::complex<double> w10,std::complex<double> w11);
void fun_fourier_transform_DFT_full_complex(int N,std::complex<double> tab[]);
void fun_radix_4_podstawa1(std::complex<double> &w0,std::complex<double> &w1);
void fun_radix_4_podstawa2(std::complex<double> &w0,std::complex<double> &w1);
std::complex<double> nb1,nb2,nb3,nb4,nb5,nb9,nb12,nb13,nb15,nb16,nb17;
int nb6=0,nb7=0,nb8=0,nb10=0,nb11=0,nb14=0;
static double diffclock(clock_t clock2,clock_t clock1)
{
double diffticks=clock1-clock2;
double diffms=(diffticks)/(CLOCKS_PER_SEC/1000);
return diffms;
}
int main()
{
const double pi=3.141592653589793238462;
int N;
//if N==period of signal in table tab[] then resolution = 1 Hz
std::complex<double> w0;
std::complex<double> w1;
int nn=0,aa=0,bb=0;
int maks=0;
double time1,time2;
double zmienna=0;
int flag=0;
std::complex<double> tab2[4096]={};
std::complex<double> tab3[4096]={};
N=4096;//need to change size of tab2 in function: fun_fourier_transform_DFT_full_complex
for(int i=0;i<N;i++)
{
tab2[i].real()=i+1;
tab2[i].imag()=N+i+1;
tab3[i].real()=i+1;
tab3[i].imag()=N+i+1;
}
cout<<"signal 1="<<endl;
system("pause");
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab2[j].real()*1000)/1000<<" ";
}
cout<<endl;
cout<<endl;
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab2[j].imag()*1000)/1000<<" ";
}
cout<<endl;
cout<<endl;
for(int i=0;i<N;i++)
{
// tab3[i].real()=sin(i*2*pi/N+pi/2);
//tab3[i].real()=tab3[i].real()+sin(i*2*2*pi/N+pi/2);
// tab3[i].real()=tab3[i].real()+sin(i*3*2*pi/N+pi/2);
// tab3[i].imag()=0;
}
cout<<"signal 2="<<endl;
system("pause");
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab3[j].real()*1000)/1000<<" ";
}
cout<<endl;
cout<<endl;
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab3[j].imag()*1000)/1000<<" ";
}
cout<<endl;
cout<<endl;
cout<<" start calculations:"<<endl<<endl;
system("pause");
cout<<"calculating first DFT"<<endl;
fun_fourier_transform_DFT_full_complex(N,tab3);
//////////////////////////////////////////////////////////
cout<<"calculating FFT"<<endl;
clock_t start = clock();
fun_radix_4_podstawa1(w0,w1);
fun_fourier_transform_FFT_radix_4_N_points_universal_final(N,tab2,w0,w1);
fun_inverse_bits_radix_4(N,tab2);
time1=diffclock( start, clock() );
///////////////////////////////////////////////////////////
cout<<endl;
cout<<endl;
cout<<"frequency Hz FFT radix-4 real()"<<endl;
system("pause");
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab2[j].real()*1000)/1000<<" ";
}
cout<<endl;
cout<<endl;
cout<<"frequency Hz FFT radix-4 imag()"<<endl;
system("pause");
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab2[j].imag()*1000)/1000<<" ";
}
cout<<endl;
cout<<endl;
cout<<"frequency Hz DFT real()"<<endl;
system("pause");
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab3[j].real()*1000)/1000<<" ";
}
cout<<endl;
cout<<endl;
cout<<"frequency Hz DFT imag()"<<endl;
system("pause");
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab3[j].imag()*1000)/1000<<" ";
}
cout<<endl;
cout<<endl;
cout<<"if radix-4 == DFT tab2[j].real(): "<<endl;system("pause");
flag=0;
for(int j=0;j<N;j++)
{
if(((tab3[j].real()-tab2[j].real()>=-0.03)&&(tab3[j].real()-tab2[j].real()<=0.03)))
{
flag++;
//cout.precision(4);
cout<<" j= "<<j<<" "<<round(tab2[j].real()*1000)/1000<<" ok ";
//system("pause");
}
else {
cout<<" j= "<<j<<" "<<-1<<" .not equal.. ";
//system("pause");
}
}
if(flag>maks){maks=flag;}
cout<<endl<<"max equal= "<<maks<<endl;
system("pause");
cout<<endl;
/////////////////////////////////////////////////////////////////
start = clock();
fun_radix_4_podstawa2(w0,w1);
fun_inverse_fourier_transform_FFT_radix_4_N_points_universal_final(N,tab2,w0,w1);
fun_inverse_bits_radix_4(N,tab2);
time2=diffclock( start, clock() );
////////////////////////////////////////////////////////////////
cout<<"inverse/signal= real()"<<endl;
system("pause");
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab2[j].real()*1000)/1000<<" ";
}
cout<<endl;
cout<<endl;
cout<<"inverse/signal= imag()"<<endl;
system("pause");
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab2[j].imag()*1000)/1000<<" ";
}
cout<<endl;
cout<<endl;
cout<<endl;
cout<<"time for normal FFT radix-4 = "<<time1<<endl;
cout<<"time for inverse FFT radix-4 = "<<time2<<endl;
system("pause");
return 0;
}
//////////////////////////////////////////////
void fun_inverse_bits_radix_4(int N,std::complex<double> tab[])
{
//code by Sidney Burrus
std::complex<double> t;
//N=4^a;
// Radix-4 bit-reverse
double T;
int j = 0;
int N2 = N>>2;
int N1=0;
for (int i=0; i < N-1; i++) {
if (i < j) {
t = tab[i];
tab[i] = tab[j];
tab[j] = t;
}
N1 = N2;
while ( j >= 3*N1 ) {
j -= 3*N1;
N1 >>= 2;
}
j += N1;
}
}
///////////////////////////////////////////////////
void fun_fourier_transform_DFT_full_complex(int N,std::complex<double> tab[])
{
const double pi=3.141592653589793238462;
std::complex<double> tab2[4096*4]={}; // tab2[]==N
std::complex<double> w[1]={{1,1}};
double zmienna1=2*pi/(float)N;
double fi2=fi;
for (int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
//complex number method:
w[0].real()=cos(i*j*zmienna1+fi2);
w[0].imag()=(-sin(i*j*zmienna1+fi2));
tab2[i]=tab2[i]+tab[j]*w[0];
}
}
for(int j=0;j<N;j++)
{
tab[j].real() =tab2[j].real()*2/N;
tab[j].imag() =tab2[j].imag()*2/N;
}
}
//////////////////
void fun_fourier_transform_FFT_radix_4_N_points_universal_final(int N,std::complex<double> tab[],std::complex<double> w10,std::complex<double> w11)
{
const double pi=3.141592653589793238462;
std::complex<double> w1[1]={{1,0}};
std::complex<double> w2[1]={{1,0}};
std::complex<double> w3[1]={{1,0}};
std::complex<double> w4[1]={{1,0}};
std::complex<double> tmp1,tmp2,tmp3,tmp4,tmp6,tmp7,tmp8;
std::complex<double> tmp10,tmp20,tmp30,tmp40;
int nr1=0,nr2=0,nr3=0,nr4=0,nr5=0;
int nr10=0,nr20=0,nr31=0,nr32=0,nr33=0;
int nb_stages=0,rx4=0;
double tmp5,tmp100,tmp200;
int increment=0;
int nn=0;
tmp5=2*pi/(N/1);
rx4=4;//radix-4
nn=N;
for(int i=0;i<100;i++)
{
nn=(float)nn/(float)rx4;
if(nn>=1.0)
{
nb_stages++;
}
}
//stage 1
w1[0].real()=cos(0*tmp5);
w1[0].imag()=-sin(0*tmp5);
w2[0].real()=cos(0*tmp5);
w2[0].imag()=-sin(0*tmp5);
w3[0].real()=cos(0*tmp5);
w3[0].imag()=-sin(0*tmp5);
w4[0].real()=cos(0*tmp5);
w4[0].imag()=-sin(0*tmp5);
for(int i=0;i<(N/rx4);i++)
{
tmp1=w1[0]*tab[i+0];
tmp2=w2[0]*tab[i+N/4];
tmp3=w3[0]*tab[i+N/2];
tmp4=w4[0]*tab[i+3*N/4];
tmp6=w10*(tmp1-tmp3);
tmp7=w11*(tmp2-tmp4);
tmp8=tmp2+tmp4;
//radix-4
tmp10=w10*(tmp1+tmp3+tmp8);
tmp20=tmp6+tmp7;
tmp30=w10*(tmp1+tmp3-tmp8);
tmp40=tmp6-tmp7;
tab[i] =tmp10;
tab[i+N/4] =tmp20;
tab[i+N/2] =tmp30;
tab[i+3*N/4] =tmp40;
}
///////////////////////////////////////////
increment=0;
for(int stg=1;stg<nb_stages;stg++)
{
nr1=N/pow(rx4,0+increment);
nr2=N/pow(rx4,1+increment);
nr3=N/pow(rx4,2+increment);
nr4=pow(rx4,(nb_stages-2-increment));
nr5=pow(rx4,0+increment);
nr31=1*nr3;
nr32=2*nr3;
nr33=3*nr3;
for(int j=0;j<nr4;j++)
{
for(int i=0;i<rx4;i++)
{
nr20=nr2*i;
tmp100=nr5*i*(j+nr4)*tmp5;
tmp200=nr5*i*j*tmp5;
w1[0].real()= cos(tmp200);
w1[0].imag()=-sin(tmp200);
w2[0].real()= cos(tmp100);
w2[0].imag()=-sin(tmp100);
w3[0].real()= cos(2*tmp100- tmp200);
w3[0].imag()=-sin(2*tmp100- tmp200);
w4[0].real()=cos(3*tmp100-2*tmp200);
w4[0].imag()=-sin(3*tmp100-2*tmp200);
for(int m=0;m<nr5;m++)
{
nr10=nr1*m;
tmp1=w1[0]*tab[ nr20+nr10+j];
tmp2=w2[0]*tab[nr31+nr20+nr10+j];
tmp3=w3[0]*tab[nr32+nr20+nr10+j];
tmp4=w4[0]*tab[nr33+nr20+nr10+j];
tmp6=w10*(tmp1-tmp3);
tmp7=w11*(tmp2-tmp4);
//radix-4
tmp10=w10*(tmp1+tmp2+tmp3+tmp4);
tmp20=tmp6+tmp7;
tmp30=w10*(tmp1-tmp2+tmp3-tmp4);
tmp40=tmp6-tmp7;
tab[ nr20+nr10+j]=tmp10;
tab[nr31+nr20+nr10+j]=tmp20;
tab[nr32+nr20+nr10+j]=tmp30;
tab[nr33+nr20+nr10+j]=tmp40;
}
}
}
increment++;
}
///////////////////////////////////////////
for(int j=0;j<N;j++)
{
tab[j].real() =tab[j].real()*2/N;
tab[j].imag() =tab[j].imag()*2/N;
}
}
////////////////////////////////
void fun_inverse_fourier_transform_FFT_radix_4_N_points_universal_final(int N,std::complex<double> tab[],std::complex<double> w10,std::complex<double> w11)
{
const double pi=3.141592653589793238462;
std::complex<double> w1[1]={{1,0}};
std::complex<double> w2[1]={{1,0}};
std::complex<double> w3[1]={{1,0}};
std::complex<double> w4[1]={{1,0}};
std::complex<double> tmp1,tmp2,tmp3,tmp4,tmp6,tmp7;
std::complex<double> tmp10,tmp20,tmp30,tmp40;
int nr1=0,nr2=0,nr3=0,nr4=0,nr5=0;
int nr10=0,nr20=0,nr31=0,nr32=0,nr33=0;
int nb_stages=0,rx4=0;
double tmp5,tmp100,tmp200;
int increment=0;
int nn=0;
tmp5=2*pi/(N/1);
rx4=4;//radix-4
nn=N;
for(int i=0;i<100;i++)
{
nn=(float)nn/(float)rx4;
if(nn>=1.0)
{
nb_stages++;
}
}
//stage 1
w1[0].real()=cos(0*tmp5);
w1[0].imag()= sin(0*tmp5);
w2[0].real()=cos(0*tmp5);
w2[0].imag()= sin(0*tmp5);
w3[0].real()=cos(0*tmp5);
w3[0].imag()= sin(0*tmp5);
w4[0].real()=cos(0*tmp5);
w4[0].imag()= sin(0*tmp5);
for(int i=0;i<(N/rx4);i++)
{
tmp1=w1[0]*tab[i+0];
tmp2=w2[0]*tab[i+N/4];
tmp3=w3[0]*tab[i+N/2];
tmp4=w4[0]*tab[i+3*N/4];
tmp6=w10*(tmp1-tmp3);
tmp7=w11*(tmp2-tmp4);
//radix-4
tmp10=w10*(tmp1+tmp2+tmp3+tmp4);
tmp20=tmp6+tmp7;
tmp30=w10*(tmp1-tmp2+tmp3-tmp4);
tmp40=tmp6-tmp7;
tab[i] =tmp10;
tab[i+N/4] =tmp20;
tab[i+N/2] =tmp30;
tab[i+3*N/4] =tmp40;
}
///////////////////////////////////////////
increment=0;
for(int stg=1;stg<nb_stages;stg++)
{
nr1=N/pow(rx4,0+increment);
nr2=N/pow(rx4,1+increment);
nr3=N/pow(rx4,2+increment);
nr4=pow(rx4,(nb_stages-2-increment));
nr5=pow(rx4,0+increment);
nr31=1*nr3;
nr32=2*nr3;
nr33=3*nr3;
for(int j=0;j<nr4;j++)
{
for(int i=0;i<rx4;i++)
{
nr20=nr2*i;
/*
tmp100=nr5*i*(j+nr4)*tmp5;
tmp200=nr5*i*j*tmp5;
w1[0].real()= cos(tmp200);
w1[0].imag()= sin(tmp200);
w2[0].real()= cos(tmp100);
w2[0].imag()= sin(tmp100);
w3[0].real()= cos(2*tmp100- tmp200);
w3[0].imag()= sin(2*tmp100- tmp200);
w4[0].real()= cos(3*tmp100-2*tmp200);
w4[0].imag()= sin(3*tmp100-2*tmp200);
*/
tmp100=nr5*i*(j+nr4);
tmp200=nr5*i*j;
w1[0].real()= cos(tmp200*tmp5);
w1[0].imag()= sin(tmp200*tmp5);
w2[0].real()= cos(tmp100*tmp5);
w2[0].imag()= sin(tmp100*tmp5);
w3[0].real()= cos((2*tmp100- tmp200)*tmp5);
w3[0].imag()= sin((2*tmp100- tmp200)*tmp5);
w4[0].real()= cos((3*tmp100-2*tmp200)*tmp5);
w4[0].imag()= sin((3*tmp100-2*tmp200)*tmp5);
for(int m=0;m<nr5;m++)
{
nr10=nr1*m;
tmp1=w1[0]*tab[ nr20+nr10+j];
tmp2=w2[0]*tab[nr31+nr20+nr10+j];
tmp3=w3[0]*tab[nr32+nr20+nr10+j];
tmp4=w4[0]*tab[nr33+nr20+nr10+j];
tmp6=w10*(tmp1-tmp3);
tmp7=w11*(tmp2-tmp4);
//radix-4
tmp10=w10*(tmp1+tmp2+tmp3+tmp4);
tmp20=tmp6+tmp7;
tmp30=w10*(tmp1-tmp2+tmp3-tmp4);
tmp40=tmp6-tmp7;
tab[ nr20+nr10+j]=tmp10;
tab[nr31+nr20+nr10+j]=tmp20;
tab[nr32+nr20+nr10+j]=tmp30;
tab[nr33+nr20+nr10+j]=tmp40;
}
}
}
increment++;
}
///////////////////////////////
for(int j=0;j<N;j++)
{
tab[j].real() =tab[j].real()*0.5;
tab[j].imag() =tab[j].imag()*0.5;
}
}
//////////////////
void fun_radix_4_podstawa1(std::complex<double> &w0,std::complex<double> &w1)
{
const double pi=3.141592653589793238462;
//std::complex<double> w0,w1,w2,w3,w4,w6,w9;
double tmp5=2*pi/4;
double fi2=fi;
w0.real()=round(cos(0*tmp5+fi2)*1000)/1000;
w0.imag()=round(-sin(0*tmp5+fi2)*1000)/1000;
w1.real()=round(cos(1*tmp5+fi2)*1000)/1000;
w1.imag()=round(-sin(1*tmp5+fi2)*1000)/1000;
w0=w0;
w1=w1;
w0.real()=w0.real();
w0.imag()=w0.imag();
w1.real()=w1.real();
w1.imag()=w1.imag();
//w2.real()=round(cos(2*tmp5)*1000)/1000;//==-w0
//w2.imag()=round(-sin(2*tmp5)*1000)/1000;//==-w0
//w3.real()=round(cos(3*tmp5)*1000)/1000;//==-w1
//w3.imag()=round(-sin(3*tmp5)*1000)/1000;//==-w1
//w4.real()=round(cos(4*tmp5)*1000)/1000;//==+w0
//w4.imag()=round(-sin(4*tmp5)*1000)/1000;//==+w0
//w6.real()=round(cos(6*tmp5)*1000)/1000;//==-w0
//w6.imag()=round(-sin(6*tmp5)*1000)/1000;//==-w0
//w9.real()=round(cos(9*tmp5)*1000)/1000;//==+w1
//w9.imag()=round(-sin(9*tmp5)*1000)/1000;//==+w1
//cout<<" "<<w0<<" "<<w0<<" "<<w0<<" "<<w0<<endl;
//cout<<" "<<w0<<" "<<w1<<" "<<w2<<" "<<w3<<endl;
//cout<<" "<<w0<<" "<<w2<<" "<<w4<<" "<<w6<<endl;
//cout<<" "<<w0<<" "<<w3<<" "<<w6<<" "<<w9<<endl;
//system("pause");
}
void fun_radix_4_podstawa2(std::complex<double> &w0,std::complex<double> &w1)
{
const double pi=3.141592653589793238462;
//std::complex<double> w0,w1,w2,w3,w4,w6,w9;
double tmp5=2*pi/4;
double fi2=fi;
w0.real()=round(cos(0*tmp5+fi2)*1000)/1000;
w0.imag()=round(sin(0*tmp5+fi2)*1000)/1000;
w1.real()=round(cos(1*tmp5+fi2)*1000)/1000;
w1.imag()=round(sin(1*tmp5+fi2)*1000)/1000;
w0=w0;
w1=w1;
w0.real()=w0.real();
w0.imag()=w0.imag();
w1.real()=w1.real();
w1.imag()=w1.imag();
//cout<<" "<<w0<<" "<<w0<<" "<<w0<<" "<<w0<<endl;
//cout<<" "<<w0<<" "<<w1<<" "<<w2<<" "<<w3<<endl;
//cout<<" "<<w0<<" "<<w2<<" "<<w4<<" "<<w6<<endl;
//cout<<" "<<w0<<" "<<w3<<" "<<w6<<" "<<w9<<endl;
//system("pause");
}
//this is new in that method:
//when you want to have equal results that are in false modificator in normal FFT then change this:
/*
fun_fourier_transform_FFT_radix_4_N_points_universal_final_official
{
for(int j=0;j<N;j++)
{
tab[j].real() =tab[j].real()*2/N;
tab[j].imag() =tab[j].imag()*2/N;
}
}
//and:
fun_inverse_fourier_transform_FFT_radix_4_N_points_universal_final_official
{
for(int j=0;j<N;j++)
{
tab[j].real() =tab[j].real()*0.5;
tab[j].imag() =tab[j].imag()*0.5;
}
}
//for official modificator that is only in inverse FFT:
fun_fourier_transform_FFT_radix_4_N_points_universal_final_official
{
}
fun_inverse_fourier_transform_FFT_radix_4_N_points_universal_final_official
{
for(int i=0;i<N;i++)
{
tablica1[0][i]=tablica1[0][i]*1/(float)N;
tablica1[1][i]=tablica1[1][i]*1/(float)N;
}
}
*/
//haven't try it with other function that cos(x)+jsin(x)=sin(x+pi/2)+jsin(x)
Subskrybuj:
Komentarze do posta (Atom)
Brak komentarzy:
Prześlij komentarz