sobota, 6 maja 2017

inverse fast fourier transform FFT radix-4 N points universal final



//source:
//https://www.google.ch/patents/US6957241
//http://www.google.ch/patents/US20020083107
//https://www.beechwood.eu/fft-implementation-r2-dit-r4-dif-r8-dif/
//http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html
//http://dsp.stackexchange.com/questions/3481/radix-4-fft-implementation

//https://community.arm.com/graphics/b/blog/posts/speeding-up-fast-fourier-transform-mixed-radix-on-mobile-arm-mali-gpu-by-means-of-opencl---part-1
//book: "Cyfrowe przetwarzanie sygnalow" - Tomasz Zielinski it has quick version of radix-2 because it calculates less sin() and cos()


//author marcin matysek (r)ewertyn.PL

//inverse fourier transform iFFT radix-4 for N=4096 points algorithm c++ source code implementation
//szybka odwrotna transformacja fouriera iFFT radix-4 dla N=4096 algorytm c++ kod zródlowy implementacja


#include <iostream>
#include "conio.h"
#include <stdlib.h>
#include <math.h>
#include <cmath>
#include <time.h>
#include <complex>
#include <fstream>

using namespace std;
//const double pi2=3.141592653589793238462;
double fi=0;

//complex number method:
void fun_inverse_bits_radix_4(int N,std::complex<double> tab[]);
void fun_fourier_transform_FFT_radix_4_N_points_universal_final(int N,std::complex<double> tab[],std::complex<double> w10,std::complex<double> w11);
void fun_inverse_fourier_transform_FFT_radix_4_N_points_universal_final(int N,std::complex<double> tab[],std::complex<double> w10,std::complex<double> w11);
void fun_fourier_transform_DFT_full_complex(int N,std::complex<double> tab[]);
void fun_radix_4_podstawa1(std::complex<double> &w0,std::complex<double> &w1);
void fun_radix_4_podstawa2(std::complex<double> &w0,std::complex<double> &w1);


std::complex<double> nb1,nb2,nb3,nb4,nb5,nb9,nb12,nb13,nb15,nb16,nb17;
int nb6=0,nb7=0,nb8=0,nb10=0,nb11=0,nb14=0;

static double diffclock(clock_t clock2,clock_t clock1)
{
    double diffticks=clock1-clock2;
    double diffms=(diffticks)/(CLOCKS_PER_SEC/1000);
    return diffms;
}
int main()
{
    const double pi=3.141592653589793238462;
    int N;
    //if N==period of signal in table tab[] then resolution = 1 Hz
    std::complex<double> w0;
    std::complex<double> w1;
    int nn=0,aa=0,bb=0;
    int maks=0;
    double time1,time2;
    double zmienna=0;
    int flag=0;
    std::complex<double> tab2[4096]={};
    std::complex<double> tab3[4096]={};

    N=4096;//need to change size of tab2 in function: fun_fourier_transform_DFT_full_complex



    for(int i=0;i<N;i++)
    {
        tab2[i].real()=i+1;
        tab2[i].imag()=N+i+1;
        tab3[i].real()=i+1;
        tab3[i].imag()=N+i+1;
    }


    cout<<"signal 1="<<endl;
     system("pause");
    for(int j=0;j<N;j++)
    {
    cout.precision(4);
    cout<<round(tab2[j].real()*1000)/1000<<"  ";
    }
    cout<<endl;
    cout<<endl;
    for(int j=0;j<N;j++)
    {
    cout.precision(4);
    cout<<round(tab2[j].imag()*1000)/1000<<"  ";
    }
    cout<<endl;
    cout<<endl;
    for(int i=0;i<N;i++)
    {
       // tab3[i].real()=sin(i*2*pi/N+pi/2);
        //tab3[i].real()=tab3[i].real()+sin(i*2*2*pi/N+pi/2);
       // tab3[i].real()=tab3[i].real()+sin(i*3*2*pi/N+pi/2);
       // tab3[i].imag()=0;
    }
    cout<<"signal 2="<<endl;
    system("pause");
    for(int j=0;j<N;j++)
    {
    cout.precision(4);
    cout<<round(tab3[j].real()*1000)/1000<<"  ";
    }
    cout<<endl;
    cout<<endl;
    for(int j=0;j<N;j++)
    {
    cout.precision(4);
    cout<<round(tab3[j].imag()*1000)/1000<<"  ";
    }
    cout<<endl;
    cout<<endl;
    cout<<"      start calculations:"<<endl<<endl;
     system("pause");
     cout<<"calculating first DFT"<<endl;
    fun_fourier_transform_DFT_full_complex(N,tab3);
    //////////////////////////////////////////////////////////
     cout<<"calculating FFT"<<endl;
    clock_t start = clock();
    fun_radix_4_podstawa1(w0,w1);
    fun_fourier_transform_FFT_radix_4_N_points_universal_final(N,tab2,w0,w1);
    fun_inverse_bits_radix_4(N,tab2);
    time1=diffclock( start, clock() );
    ///////////////////////////////////////////////////////////


    cout<<endl;
    cout<<endl;
    cout<<"frequency Hz FFT radix-4 real()"<<endl;
    system("pause");
    for(int j=0;j<N;j++)
    {
    cout.precision(4);
    cout<<round(tab2[j].real()*1000)/1000<<"  ";
    }
    cout<<endl;
    cout<<endl;
    cout<<"frequency Hz FFT radix-4 imag()"<<endl;
     system("pause");
    for(int j=0;j<N;j++)
    {
    cout.precision(4);
    cout<<round(tab2[j].imag()*1000)/1000<<"  ";
    }
    cout<<endl;
    cout<<endl;

    cout<<"frequency Hz DFT real()"<<endl;
     system("pause");
    for(int j=0;j<N;j++)
    {
    cout.precision(4);
    cout<<round(tab3[j].real()*1000)/1000<<"  ";
    }
    cout<<endl;
    cout<<endl;
    cout<<"frequency Hz DFT imag()"<<endl;
     system("pause");
    for(int j=0;j<N;j++)
    {
    cout.precision(4);
    cout<<round(tab3[j].imag()*1000)/1000<<"  ";
    }
    cout<<endl;
    cout<<endl;
    cout<<"if radix-4 == DFT tab2[j].real(): "<<endl;system("pause");

    flag=0;
       for(int j=0;j<N;j++)
        {
          if(((tab3[j].real()-tab2[j].real()>=-0.03)&&(tab3[j].real()-tab2[j].real()<=0.03)))
          {
            flag++;
            //cout.precision(4);
            cout<<" j= "<<j<<" "<<round(tab2[j].real()*1000)/1000<<" ok ";
            //system("pause");
          }
            else {
                cout<<" j= "<<j<<" "<<-1<<" .not equal.. ";
                //system("pause");
            }
        }
        if(flag>maks){maks=flag;}

    cout<<endl<<"max equal= "<<maks<<endl;
    system("pause");
    cout<<endl;

    /////////////////////////////////////////////////////////////////
    start = clock();
    fun_radix_4_podstawa2(w0,w1);
    fun_inverse_fourier_transform_FFT_radix_4_N_points_universal_final(N,tab2,w0,w1);
    fun_inverse_bits_radix_4(N,tab2);
    time2=diffclock( start, clock() );
    ////////////////////////////////////////////////////////////////


    cout<<"inverse/signal= real()"<<endl;
       system("pause");
    for(int j=0;j<N;j++)
    {
    cout.precision(4);
    cout<<round(tab2[j].real()*1000)/1000<<"  ";
    }
    cout<<endl;
    cout<<endl;
    cout<<"inverse/signal= imag()"<<endl;
    system("pause");
    for(int j=0;j<N;j++)
    {
    cout.precision(4);
    cout<<round(tab2[j].imag()*1000)/1000<<"  ";
    }
    cout<<endl;
    cout<<endl;

    cout<<endl;
    cout<<"time for normal  FFT radix-4 = "<<time1<<endl;
    cout<<"time for inverse FFT radix-4 = "<<time2<<endl;
    system("pause");
    return 0;
}
//////////////////////////////////////////////
void fun_inverse_bits_radix_4(int N,std::complex<double> tab[])
{

//code by Sidney Burrus
    std::complex<double> t;
    //N=4^a;
    // Radix-4 bit-reverse
    double T;
    int j = 0;
    int N2 = N>>2;
    int N1=0;
    for (int i=0; i < N-1; i++) {
        if (i < j) {
            t = tab[i];
            tab[i] = tab[j];
            tab[j] = t;
        }
        N1 = N2;
        while ( j >= 3*N1 ) {
            j -= 3*N1;
            N1 >>= 2;
        }
        j += N1;
    }
}
///////////////////////////////////////////////////
void fun_fourier_transform_DFT_full_complex(int N,std::complex<double> tab[])
{
    const double pi=3.141592653589793238462;
    std::complex<double> tab2[4096*4]={};    // tab2[]==N
    std::complex<double>  w[1]={{1,1}};


double zmienna1=2*pi/(float)N;
double fi2=fi;

for (int i=0;i<N;i++)
{
    for(int j=0;j<N;j++)
    {
          //complex number method:
          w[0].real()=cos(i*j*zmienna1+fi2);
          w[0].imag()=(-sin(i*j*zmienna1+fi2));
          tab2[i]=tab2[i]+tab[j]*w[0];

    }
}

    for(int j=0;j<N;j++)
    {
      tab[j].real() =tab2[j].real()*2/N;
      tab[j].imag() =tab2[j].imag()*2/N;
    }

}
//////////////////
void fun_fourier_transform_FFT_radix_4_N_points_universal_final(int N,std::complex<double> tab[],std::complex<double> w10,std::complex<double> w11)
{
    const double pi=3.141592653589793238462;
    std::complex<double>  w1[1]={{1,0}};
    std::complex<double>  w2[1]={{1,0}};
    std::complex<double>  w3[1]={{1,0}};
    std::complex<double>  w4[1]={{1,0}};
    std::complex<double> tmp1,tmp2,tmp3,tmp4,tmp6,tmp7,tmp8;
    std::complex<double> tmp10,tmp20,tmp30,tmp40;
    int nr1=0,nr2=0,nr3=0,nr4=0,nr5=0;
    int nr10=0,nr20=0,nr31=0,nr32=0,nr33=0;
    int nb_stages=0,rx4=0;
    double tmp5,tmp100,tmp200;
    int increment=0;
    int nn=0;


    tmp5=2*pi/(N/1);
    rx4=4;//radix-4
    nn=N;
    for(int i=0;i<100;i++)
    {

        nn=(float)nn/(float)rx4;
         if(nn>=1.0)
         {
         nb_stages++;
         }
    }
//stage 1
          w1[0].real()=cos(0*tmp5);
          w1[0].imag()=-sin(0*tmp5);
          w2[0].real()=cos(0*tmp5);
          w2[0].imag()=-sin(0*tmp5);
          w3[0].real()=cos(0*tmp5);
          w3[0].imag()=-sin(0*tmp5);
          w4[0].real()=cos(0*tmp5);
          w4[0].imag()=-sin(0*tmp5);
        for(int i=0;i<(N/rx4);i++)
        {

          tmp1=w1[0]*tab[i+0];
          tmp2=w2[0]*tab[i+N/4];
          tmp3=w3[0]*tab[i+N/2];
          tmp4=w4[0]*tab[i+3*N/4];
          tmp6=w10*(tmp1-tmp3);
          tmp7=w11*(tmp2-tmp4);
          tmp8=tmp2+tmp4;
         //radix-4
            tmp10=w10*(tmp1+tmp3+tmp8);
            tmp20=tmp6+tmp7;
            tmp30=w10*(tmp1+tmp3-tmp8);
            tmp40=tmp6-tmp7;
          tab[i]       =tmp10;
          tab[i+N/4]   =tmp20;
          tab[i+N/2]   =tmp30;
          tab[i+3*N/4] =tmp40;
        }
///////////////////////////////////////////

    increment=0;

    for(int stg=1;stg<nb_stages;stg++)
    {
        nr1=N/pow(rx4,0+increment);
        nr2=N/pow(rx4,1+increment);
        nr3=N/pow(rx4,2+increment);
        nr4=pow(rx4,(nb_stages-2-increment));
        nr5=pow(rx4,0+increment);
        nr31=1*nr3;
        nr32=2*nr3;
        nr33=3*nr3;
        for(int j=0;j<nr4;j++)
        {
            for(int i=0;i<rx4;i++)
            {
                nr20=nr2*i;
                tmp100=nr5*i*(j+nr4)*tmp5;
                tmp200=nr5*i*j*tmp5;
                w1[0].real()= cos(tmp200);
                w1[0].imag()=-sin(tmp200);
                w2[0].real()= cos(tmp100);
                w2[0].imag()=-sin(tmp100);
                w3[0].real()= cos(2*tmp100-  tmp200);
                w3[0].imag()=-sin(2*tmp100-  tmp200);
                w4[0].real()=cos(3*tmp100-2*tmp200);
                w4[0].imag()=-sin(3*tmp100-2*tmp200);
                 for(int m=0;m<nr5;m++)
                 {
                    nr10=nr1*m;

                    tmp1=w1[0]*tab[     nr20+nr10+j];
                    tmp2=w2[0]*tab[nr31+nr20+nr10+j];
                    tmp3=w3[0]*tab[nr32+nr20+nr10+j];
                    tmp4=w4[0]*tab[nr33+nr20+nr10+j];
                    tmp6=w10*(tmp1-tmp3);
                    tmp7=w11*(tmp2-tmp4);
                    //radix-4
                    tmp10=w10*(tmp1+tmp2+tmp3+tmp4);
                    tmp20=tmp6+tmp7;
                    tmp30=w10*(tmp1-tmp2+tmp3-tmp4);
                    tmp40=tmp6-tmp7;

                    tab[     nr20+nr10+j]=tmp10;
                    tab[nr31+nr20+nr10+j]=tmp20;
                    tab[nr32+nr20+nr10+j]=tmp30;
                    tab[nr33+nr20+nr10+j]=tmp40;
                }
            }
        }
        increment++;
    }
///////////////////////////////////////////
    for(int j=0;j<N;j++)
    {
      tab[j].real() =tab[j].real()*2/N;
      tab[j].imag() =tab[j].imag()*2/N;
    }

}
////////////////////////////////

void fun_inverse_fourier_transform_FFT_radix_4_N_points_universal_final(int N,std::complex<double> tab[],std::complex<double> w10,std::complex<double> w11)
{
    const double pi=3.141592653589793238462;
    std::complex<double>  w1[1]={{1,0}};
    std::complex<double>  w2[1]={{1,0}};
    std::complex<double>  w3[1]={{1,0}};
    std::complex<double>  w4[1]={{1,0}};
    std::complex<double> tmp1,tmp2,tmp3,tmp4,tmp6,tmp7;
    std::complex<double> tmp10,tmp20,tmp30,tmp40;
    int nr1=0,nr2=0,nr3=0,nr4=0,nr5=0;
    int nr10=0,nr20=0,nr31=0,nr32=0,nr33=0;
    int nb_stages=0,rx4=0;
    double tmp5,tmp100,tmp200;
    int increment=0;
    int nn=0;


    tmp5=2*pi/(N/1);
    rx4=4;//radix-4
    nn=N;
    for(int i=0;i<100;i++)
    {

        nn=(float)nn/(float)rx4;
         if(nn>=1.0)
         {
         nb_stages++;
         }
    }
//stage 1
          w1[0].real()=cos(0*tmp5);
          w1[0].imag()= sin(0*tmp5);
          w2[0].real()=cos(0*tmp5);
          w2[0].imag()= sin(0*tmp5);
          w3[0].real()=cos(0*tmp5);
          w3[0].imag()= sin(0*tmp5);
          w4[0].real()=cos(0*tmp5);
          w4[0].imag()= sin(0*tmp5);
        for(int i=0;i<(N/rx4);i++)
        {

          tmp1=w1[0]*tab[i+0];
          tmp2=w2[0]*tab[i+N/4];
          tmp3=w3[0]*tab[i+N/2];
          tmp4=w4[0]*tab[i+3*N/4];
          tmp6=w10*(tmp1-tmp3);
          tmp7=w11*(tmp2-tmp4);
         //radix-4
        tmp10=w10*(tmp1+tmp2+tmp3+tmp4);
        tmp20=tmp6+tmp7;
        tmp30=w10*(tmp1-tmp2+tmp3-tmp4);
        tmp40=tmp6-tmp7;
          tab[i]       =tmp10;
          tab[i+N/4]   =tmp20;
          tab[i+N/2]   =tmp30;
          tab[i+3*N/4] =tmp40;
        }
///////////////////////////////////////////

    increment=0;

    for(int stg=1;stg<nb_stages;stg++)
    {
        nr1=N/pow(rx4,0+increment);
        nr2=N/pow(rx4,1+increment);
        nr3=N/pow(rx4,2+increment);
        nr4=pow(rx4,(nb_stages-2-increment));
        nr5=pow(rx4,0+increment);
        nr31=1*nr3;
        nr32=2*nr3;
        nr33=3*nr3;
        for(int j=0;j<nr4;j++)
        {

            for(int i=0;i<rx4;i++)
            {
                nr20=nr2*i;
                /*
                tmp100=nr5*i*(j+nr4)*tmp5;
                tmp200=nr5*i*j*tmp5;
                w1[0].real()= cos(tmp200);
                w1[0].imag()= sin(tmp200);
                w2[0].real()= cos(tmp100);
                w2[0].imag()= sin(tmp100);
                w3[0].real()= cos(2*tmp100-  tmp200);
                w3[0].imag()= sin(2*tmp100-  tmp200);
                w4[0].real()= cos(3*tmp100-2*tmp200);
                w4[0].imag()= sin(3*tmp100-2*tmp200);
                */

                tmp100=nr5*i*(j+nr4);
                tmp200=nr5*i*j;
                w1[0].real()= cos(tmp200*tmp5);
                w1[0].imag()= sin(tmp200*tmp5);
                w2[0].real()= cos(tmp100*tmp5);
                w2[0].imag()= sin(tmp100*tmp5);
                w3[0].real()= cos((2*tmp100-  tmp200)*tmp5);
                w3[0].imag()= sin((2*tmp100-  tmp200)*tmp5);
                w4[0].real()= cos((3*tmp100-2*tmp200)*tmp5);
                w4[0].imag()= sin((3*tmp100-2*tmp200)*tmp5);


                 for(int m=0;m<nr5;m++)
                 {
                    nr10=nr1*m;

                    tmp1=w1[0]*tab[     nr20+nr10+j];
                    tmp2=w2[0]*tab[nr31+nr20+nr10+j];
                    tmp3=w3[0]*tab[nr32+nr20+nr10+j];
                    tmp4=w4[0]*tab[nr33+nr20+nr10+j];
                    tmp6=w10*(tmp1-tmp3);
                    tmp7=w11*(tmp2-tmp4);
                    //radix-4
                    tmp10=w10*(tmp1+tmp2+tmp3+tmp4);
                    tmp20=tmp6+tmp7;
                    tmp30=w10*(tmp1-tmp2+tmp3-tmp4);
                    tmp40=tmp6-tmp7;

                    tab[     nr20+nr10+j]=tmp10;
                    tab[nr31+nr20+nr10+j]=tmp20;
                    tab[nr32+nr20+nr10+j]=tmp30;
                    tab[nr33+nr20+nr10+j]=tmp40;
                }
            }
        }
        increment++;
    }
///////////////////////////////
    for(int j=0;j<N;j++)
    {
      tab[j].real() =tab[j].real()*0.5;
      tab[j].imag() =tab[j].imag()*0.5;
    }

}
//////////////////
void fun_radix_4_podstawa1(std::complex<double> &w0,std::complex<double> &w1)
{
    const double pi=3.141592653589793238462;
    //std::complex<double>    w0,w1,w2,w3,w4,w6,w9;
    double tmp5=2*pi/4;
    double fi2=fi;
    w0.real()=round(cos(0*tmp5+fi2)*1000)/1000;
    w0.imag()=round(-sin(0*tmp5+fi2)*1000)/1000;
    w1.real()=round(cos(1*tmp5+fi2)*1000)/1000;
    w1.imag()=round(-sin(1*tmp5+fi2)*1000)/1000;
    w0=w0;
    w1=w1;
    w0.real()=w0.real();
    w0.imag()=w0.imag();
    w1.real()=w1.real();
    w1.imag()=w1.imag();

    //w2.real()=round(cos(2*tmp5)*1000)/1000;//==-w0
    //w2.imag()=round(-sin(2*tmp5)*1000)/1000;//==-w0
    //w3.real()=round(cos(3*tmp5)*1000)/1000;//==-w1
    //w3.imag()=round(-sin(3*tmp5)*1000)/1000;//==-w1
    //w4.real()=round(cos(4*tmp5)*1000)/1000;//==+w0
    //w4.imag()=round(-sin(4*tmp5)*1000)/1000;//==+w0
    //w6.real()=round(cos(6*tmp5)*1000)/1000;//==-w0
    //w6.imag()=round(-sin(6*tmp5)*1000)/1000;//==-w0
    //w9.real()=round(cos(9*tmp5)*1000)/1000;//==+w1
    //w9.imag()=round(-sin(9*tmp5)*1000)/1000;//==+w1

   //cout<<" "<<w0<<" "<<w0<<" "<<w0<<" "<<w0<<endl;
   //cout<<" "<<w0<<" "<<w1<<" "<<w2<<" "<<w3<<endl;
   //cout<<" "<<w0<<" "<<w2<<" "<<w4<<" "<<w6<<endl;
   //cout<<" "<<w0<<" "<<w3<<" "<<w6<<" "<<w9<<endl;
   //system("pause");
}
void fun_radix_4_podstawa2(std::complex<double> &w0,std::complex<double> &w1)
{
    const double pi=3.141592653589793238462;
    //std::complex<double>    w0,w1,w2,w3,w4,w6,w9;
    double tmp5=2*pi/4;
    double fi2=fi;
    w0.real()=round(cos(0*tmp5+fi2)*1000)/1000;
    w0.imag()=round(sin(0*tmp5+fi2)*1000)/1000;
    w1.real()=round(cos(1*tmp5+fi2)*1000)/1000;
    w1.imag()=round(sin(1*tmp5+fi2)*1000)/1000;
    w0=w0;
    w1=w1;
    w0.real()=w0.real();
    w0.imag()=w0.imag();
    w1.real()=w1.real();
    w1.imag()=w1.imag();


   //cout<<" "<<w0<<" "<<w0<<" "<<w0<<" "<<w0<<endl;
   //cout<<" "<<w0<<" "<<w1<<" "<<w2<<" "<<w3<<endl;
   //cout<<" "<<w0<<" "<<w2<<" "<<w4<<" "<<w6<<endl;
   //cout<<" "<<w0<<" "<<w3<<" "<<w6<<" "<<w9<<endl;
   //system("pause");
}







//this is new in that method:


//when you want to have equal results that are in false modificator in normal FFT then change this:
/*
 fun_fourier_transform_FFT_radix_4_N_points_universal_final_official
{
    for(int j=0;j<N;j++)
    {
      tab[j].real() =tab[j].real()*2/N;
      tab[j].imag() =tab[j].imag()*2/N;
    }
}
//and:

fun_inverse_fourier_transform_FFT_radix_4_N_points_universal_final_official
{
    for(int j=0;j<N;j++)
    {
      tab[j].real() =tab[j].real()*0.5;
      tab[j].imag() =tab[j].imag()*0.5;
    }
}

//for official modificator that is only in inverse FFT:

 fun_fourier_transform_FFT_radix_4_N_points_universal_final_official
{

}
fun_inverse_fourier_transform_FFT_radix_4_N_points_universal_final_official
{
    for(int i=0;i<N;i++)
    {
        tablica1[0][i]=tablica1[0][i]*1/(float)N;
        tablica1[1][i]=tablica1[1][i]*1/(float)N;
    }
}

*/



//haven't try it with other function that cos(x)+jsin(x)=sin(x+pi/2)+jsin(x)

Brak komentarzy:

Prześlij komentarz